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ESTIMATION IN PARAMETRIC MIXTURE FAMILIES
by

Alan E. Gelfand

1. Introduction

For mixture distributions of the form
fo(z) = [f(z|n)dF (n) | (1)

we consider estimation of g(@) under squared error loss.
Conditions for the identifiability of re(z) in Fe(n) with
respect to f(z|n) are discussed in Teicher (1961).

We look at three different problems:

(1) In Section 2 we investigate the possibility
of uniformly improving upon an unbiased estimator of g(6);
(1i) In Section 3 we offer characterizations of Bayes
rules for g(8) as well as a simple complete class theorem;
(111) 1In Section 4 we investigate the performance of
empirical Bayes rules generated through the EM algorithm.
Results will generally be given for z, n, € univariate although
multidimensional extensions are available in some cases.
Our primary illustrative examples will be in the context
of the noncentral chi-square distribution where f(z|n) is
x;+2n and Fe(n) is Polisson with intensity parameter 6. Motiva-
tion is provided by recognizing that Z i1s inadmissible for

estimating g(e) = Ee(Z) and that 2_1 is inadmissible for

. it“l‘l‘s‘!‘~ 000,
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estimating g(e) = Ee(Z‘l). For the former 6(Z) = max(Z,p)
clearly dominates Z. For the latter §(2) = min(z'l,(p-2)'1)

clearly dominates 71,

2. Improving Upon Unblased Estimators

Let T(Z) be an unbiased estimator of g(6) and let
a(n) = E(T(Z)|n). The "associated conditional problem" is to
estimate a(n) under squared error loss within the family
f(z|n). We have the following result.

Theorem 1: T(Z) + ¢ ¢(Z), ¢ > 0, dominates T(Z) under

squared error loss if

covg(a(n), E(¢[n)) <0 ve (2)

Bozsup 22X{Tyeln)  _ ¢/ (3)

n E(¢“|n) ~
Proof. By direct calculation we may show that the difference

in risk between T and T + ¢¢ is

'EB(I¢(”)) ~ 2c covg(a(n), ¢(2))

where

I(n) = ¢?E(6°|n) + 2¢ E[(T-a)é|n]

But (2) is equivalent to cov (a(n), ¢(Z)) < 0 while (3) impiies

I¢(n) < 0 v¥n whence T + c¢ dominates T. |

Remark 1: To hope to satisfy condition (3), we require

cov(T,d|n) 0 whence it 1s convenlent to choose ¢ inversely

|A

related to 7. In many well-known examples, such a choice of ¢

leads to a dominating estimator, e.g., if g(8) > O, T+ dominates

T and ¢ = T+ - T 1s decreasing in 7.
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Remark 2: ¢ decreasing in T does not necessarily imply
condition (2) is met. However, if T|n is a2 natural exponential
family (Morris, 1982), 1.e., £(t|n) = e*™ P then a(n) = E(T|n)
= p'(n) increases in n while for E(¢|n), QEé%lnl = cov(T,¢|n) < O
implies E(¢|n) decreases in n so that (2) holds.

Remark 3: If T(Z) is admissible for a(n) in the conditional
problem, it may or may not be admissible for g(e). For example,
Z|n ~ N(n,1) and n{e ~ N(6,1), then Z is admissible for both
a(n) = n and g(8) = 8. If Z|n » n°1e'z"“1 and n|6 ~ e'le'"e-{ Z/2
is admissible for a(n) = n dbut ¢Z, 0 < ¢ ; 1/2 dominates 2/2 for

g(e) = 8.

Remark 4: If T, unblased for a(n), is dominated by S in
the conditional problem, 1t 1s possible that T dominates S in
the unconditional problem. In particular, if we take ¢ = S - T,
c = 1, we must have (3) hold, i.e., cov(T,¢|{n) < 0, ¥n while
the left-hand side of (2) is sufficiently pogitive ve. Examples

can readily be constructed using 3 point distributions for Z|n.

Remark 5: 1In the preceding remark, S will dominate T in
the unconditional problem i4 T|n is a natural expohential family
using Remark 2.

Suppose instead Fe(n) is a natural exponential family in n

né-x(8) and without loss

dominated by u with density f(n|e) = e
of generality suppose a(n) = n. In this setting, Karlin (1958)

supplies conditions such that cn 1s admissible for x'(e) under

squared error loss. These conditions require ¢ > 0 and




. = 1=-¢ l-¢c
6 — x(e) 0y —— x(6)
l e ¢ do = = > .e ¢ X dd = o (u)

| D

where (6,8) is the natural parameter space for f(n|6) and 6, is
an arbitrary interior point.

Suppose cn is admissible for x'(6). Is cT admissible for
x'(6)? Remark 3 shows that this is not necessarily the case.

Ve can show that, i1f Karlin's conditions hold for c

Theorem 2: If

2

E, var(S|n) > ¢“E, var(T|n) Ve (5)

6 L)

then S cannot dominate cT in estimating x'(6).

Proof. The proof essentlally imitates Karlin's argument.
Suppose S dominates cT. Let bs(e) = EB(S) - cEe(T) = Ee(s)
- cx'(8) whence bé(e) = cove(n,E(Sln)) - ¢cx"(6). Therefore

(bg(8) + cx"(8))° < x"(8) var E(S|n)

(bg(8) + cx"(8))?
x"(e)

+Eg var(S|n) < var,(S)

and finally

! 2
(bg(8) + ex"(8))
Eg(S-x'(8))2 >3
x"(e)

+ E, var(S|n)

+ (bg(8) + (c-1)x'(8))°

By our suppocsition the left-hand side of this inequality is

at most

D o, c'.‘l‘!'l" n‘..u".\‘..l""l"‘\..‘ !
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5

Eg(eT-x' (8))% = ¢? var (1) + [(e-1)yx'(8))?
. ¢ Egvar(T|n) + c¢?x"(8) + [(c-1)x'(0)]2 .

Using (5) we obtain

(b;(ﬁ) + ex"(08))°

+ (bo(8) + (e-1)y'(8))°
x"(8) S X (€)

< c®x"(8) + [(e-1)x'(8)1° ve .

Expression (6) is equivalent to Karlin, p. 413, expression (7).
The conditions (4) then imply bs(e) : 0and S = eT. |

Remark 6: This result shows that ¢'T 4 b can't dominate
cT if ¢! > c.

Remark 7: If T is MVUE for n, it 1s MVUE for x'(e).

Noncentral distributions offer a convenient family of
mixtures to study in terms of applying Theorem 1. Gelfand (1922)
provides many examples. For the noncentral chi-squared
distribution, it 1is shown tha{'¢ of the form ZB or of the form
eB2 can be used to dominate Z in estimating £ (Z) and 27! 1n
estimating Ee(z'l). Thus (Z-p)/2, the MVUE of e, can be dominated
by estimators of the form (2-p)/2 + ¢z and of the form
(Z-p)/2 + ceBz for appropriate ¢ and B. This generalizes
earlier results of Perlman and Rasmussen (197¢%) and of Neff and
Strawderman (197€). Of course (Z-p)+/2 dominates the MVUE as
well and has been supported by Chow and Hwang (19%3) who argue

that it is a simrle estimator which"cannot be imrroved upon

uniformly ané significantly"” and by Saxena andé Alam (12°2) who
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show that it dominates the MLE for 6. We will return to this
estimator in Section \U.

This section provides a method for uniformly improving
upon unblased sstimators in a mixture distribution framework.

Dominating blased estimators is a more difficult problem.

3. Bayes Estimation

Suppose we let TY(G) be a family of prior distributions
for 6 € ©. Under squared error loss the generalized Bayes

estimator for g(6) is
5,(2) = (£,(2))7}fg(6)2g(2)ar, (8) (7)

where fy(z) = J'fe(z)d'tY(e) is the marginal distribution of Z.

If the support of Ty is © and if Eygz(e) < o, then the
Bayes risk of 6Y is finite and GY is admissible.

Let Fe(n) in (1) be dominated by u with RN derivative
f(n]6). Then

5 (2) = flg(e)f(z|n)f(n|6)du(n)dly(a)
Y Jft(zIn)fn[e)duln)ar, (6)

. ]§I(n)f(zln)dﬂY(n) (&)
]f(zln)dny(n)

where ﬂY(n) is the prior distribution induced on n by Ty i.e.

dr_(n) = h _(n)du(n) and h (n) = [r(n]|e)dr (&), with

b (n) = h (W)]g(e)f(nle)dr (e}, (2)

i.e., bY(n) = EY(g(e)In).

]

{
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Expressi-n (8) shows that
Gy(z) = E(g(8)|2) = E(by(n)lZ) ’ (10)

i.e., we can calculate the Generalized Bayes rule through the
conditional problem. If we let cy(n) = Ey(g2(9)|n), then
Gy(Z) has finite Bayes risk if Ecy(n) < ™,

Let F(n|6) be a natural exponential family as in the

r
previous section. If g(e) = ¥, then bY(n) = h;l(n) d hﬂ(n) .

re an”

= = -1
if g(e) = e, bY(n) hY (n)hY(n+r).

Gelfand (1983) again offers examples using noncentral
distributions. For Z distributed noncentral chi-squared as in

the introduction,

_ Jole
hy(n) = dTy(G)

and

I (n)(2/2)" b _(n)[r(p/2 + n)33

-

s (z) =1 Y . (11)

z(zs2)" hY(n)[r(p/z + 17t
n .

r -1
If = 0 b = +r h +r).
g(e) s Y(n) (n )r Y (n)hY(n r) ((x)y denotes
the falling factorial of y terms starting at x.) At, for example,

r =1 (11) becomes

2
aJc(z) aJ (z)

. -1" -1" .

ay(z) 22 —Egg—— 35 (z) + yo 37 (12)

where Jy(Z) is the denominator of (11). Expression (12)
characterizes all generalized Bayes estimates of €. Gelfand
notes that setting 6Y(Z) = (Z-p)/2, the MVIT of €, in (12),

ylelés a second order homogeneous linear differential eguation

,,,,,,,,,,,,
» D T I
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which is not solvable, i.e., the inadmissible MVUE can't be
generalized Bayes.

A convenient family for ry(e) are the distributions
Gamma (p/2 + v,y), v > =(p-2)/2 (i.e., E(8) = y"1(p/2 + v))
which for g(6) = 6,1eads to

aJ_(2)
5, ,(2) = 7%~T (p/2 + v + 2 -—ja_z__ "z . (13)

At v

0 we obtain the closed form GY’O(Z) = (y+1)'1((y+1)'lz+p)/2
including the generalized Bayes solution, 50,0(2) = (Z+p)/2.

These estimators are discussed in Perlman and Rasmussen (197¢%)

and in Saxena and Alam (1982) who note that 50,0(2) is dominated
by the MVUE. It is straightforward to show that 6Y v2)

3
increases in v.

Returning to the rules in (7), we ask if they form a comrlete
class. The conditional problem 1s not useful here because in the
representation of GY in (8), bY depends upon the particular
prior, TY' We attack the problem directly utilizing results of
Sacks (19€3). His Remark 3, p. 766, argues that with g(e) = ¢
the class (7) will be complete under squared error loss if fe(z)
is continuous in both 6 and z and, assuming - © < ¢ < ®», for

each ¢ > 0

6°1 (z+e) 025y (z-¢)

sup ——————— < ® ,  Sup _— <™

e <0 f(z) 8 >0 NED
(1b)
821, (z-¢) 62, (z+¢)
1ir sup —m888™— = 1im sup -_— =0
d=~=82>d fg(z) d+=8 <-da fg(z)

2 PRP IR Y 3 WA IV T
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9
Condition (14) will be satified if f,(z+e)fg (z) = o (672) vz
and €, - < ¢ <=, As noted by Sacks, parts of (14) are not
needed if © belongs to a subset of RL. Ve have the following
result.

Theorem 3: 1If Fe(n), - ® <n <o, is a natural exponential
family dominated by u, a translation invariart measure, and if
f(z|n) = f(z-n), i.e., a translation family, then (7) with
g(e) = 8 is a complete class for estimating ® under sguared
error loss.

Proof. By assumptions .

02rg(z+e)  02fr(z + ¢ - n)e"® au(n)

fo(z) [f£(z - e au(n)

- e2eec

from which the conditions in (14) are immediately satisfied. |

L. Parametric Empirical Bayes Estimation

In the parametric empirical Bayes approach, Y in (7) is assumed unkrown
and is estimated from the data using the marginal distribution
of Z 1If ; estimates y the resultant empirical Bayes estimator
is 6;(2). The maximum likelihood estimator (MLE) is a frequently

employed choice of y. In our setting this requires a very

unaprealing numerical maximization of a double integral. Tris
would typically be zaccomprlished by algorithms of & Newton or

| quasi-Newton type. Such algorithms do not guarantee to increase
the l1ikelihocd at successive iterations. The EM algorithm as

described in Dempster et al. (1377) offers an attractive alternative.

O T T A T T A S T NS LS T ALY



To fix notation, let TY be dominated by w with RN

derivative ty(e). At stage k the algorithm calculates an

expectation Q(y,v,) = E, 1og(fy(z,e)|z) and then maximizes
k
Q(Y,Yk) over all y. 1In our case, this simplifies to

max ff_ (8]z)-log t_(8)dw(6) .
Y Yk Y

This new y is denoted by Yk+1 and the algorithm is repeated
until stablility is achieved. Such a procedure by its
definition may be shown to increase the likelihood with
successlve iteration (see Dempster et al., 1977). Wu (1983)
shows that under minimal assumptions such a procedure yields

a stationary value for fy(z). He recommends several EM
iterations be tried with different starting y representative
of the parameter space to try to identify local and hopefully
a global maximum. Redner and Walker (1984) extensively discuss
the use of the EM algorithm for maximum likelihood estimation
in mixture distributions. Their focus, however, is on the MLE
for 6 in fe(z) as in (1) with fe(z) being a finite mixture density and

8 a vector including parameters of the distributions being mixed.

Ir tY is an exponential family, i.e., tY = c(y)eYQ(e) , the algorithm
simplifies to maximizing 1log c(y) + Yq, where q = EYk(q(G)lz). Then Yee1
. . -t -l = - = :
is a solution to =~-c'(y)e “(y) Q.. In fact, q ., EY(qk)(q(e)Iz) which

reduces the algorithm to a stationary or fixed point problem. The conditional

representation of EY(q(G)Iz) as EY(bY(n)Iz) noted in (8) is useful nere in

P




reducing the computation needed for the repeated calculation
of the expectatlion required by the algorithm.

As an example we return to the noncentral chi-squared case
under the assumpti;m leading to (13) to obtain the empirical Bayes

estimate (z). It is clear that direct calculation of the MLE, ? , is

S

YV
difficult. However, since q(8) = -6, expression (13) up to a sign change
sets, gq = Ok for a given Y- But since EY(G) = Y-l(p/2+\)) , we have

Yieep = Yig) = eil(p/2+v).

'riting this explicitly as a fixed point problem, we have

) 28 n,
0 = 0 pr2 4 v 4 NIEF pZEY) MM | (g0,
8 + p/2 + v T ¥4} n

-

where £ (n) = T(p/2 + n + v) [I(p/2 + n)en!1". Let the right-
hand side of (14) b= denoted by wv(e;z). We may show that
(1) wv(O;z) =0, 1.e., for any z, 0 is a fixed point;
(11) wv(e;z) increases in 6 for fixed z; '
(111) wv(e;z) is bounded for fixed z;
(iv) Por 6 small Wv(e;z) X 8 regardless of z;
(v) wv(e;z) has at most one positive fixed point “or a

fixed z.

Hence, given v and z, a plot of Wv(e;z) Vs. 6 assumes one

of the two forms in Figure 1.
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FIGURE #(a)

FIGURE i(b)
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With increasing z the plot will change from Figure/(a) to
Figure/(b). As a result, if we employ the EM algorithm, we
will find that for any starting 6 under Figure (a) and for
starting 6 sufficiently small under (b), 8, + 0, 1.e., Y =
Moreover, because of (iv), the convergence will be extremely
slow (e.g., 3,000 iterations may yield ek of the order of 10'2).
It is noteworthy that when ek + 0, 1l.e., 8 =0 (; = ) we, in
fact, minimize fy(z), i.e., the EM algorithm will fail to
maximize the likelihood. But in terms of eqpirical Bayes
estimation, from (13), Gm’v(z) = 0 is a reasonable guess for @
if 2z 1s sufficiently small. If there 1s a fixed point 6 > 0,
the corresponding y must be the MLE. In implementing the EM
algorithm, we should begin with y small, i.e., € large to insure
finding this fixed point if it exists. Moreover, if after, say
300 iterations 6300 is small (say 10-2) and decreasing, we will
conclude that 8; + 0. (It is possible that the nonzero fixed
point lies below €300° but practically this is of 1ittle concern.)
The maddeningly slow convergence of the algorithm even to the
unique MLE may make the following alternative attractive. U§ing a
rough plot of wv(e;z) versus 6 for a few choices of z should
enable, when z is sufficiently large, identification of an
appropriate initial & to insure convergence of Yy to the MLE

or to conclude that 2z is sufficiently small so that 8, =+ 0.

k
We note that for any z and any starting y the empirical Baves

estimator resulting from this algorithm will be > 0 and, in fact,
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if v = 0, the.right-hand side of (13) simplifies and
85 o(2) = (2-p)*/2 (an fact, v = [p(Z-p)™11"), t.e., the
positive part version 1s empirical Bayes. Perlman and Rasmussen
(1975) observed that the MVUE is itself empirical Bayes if we take
87 o(2) with y = p(2-p)72.

An extensive simulation was conducted to study the risk
behavior of the 6§’v(z). Cases p = 6 with vy = -2,-1,0,1,2,5,10
and p = 12 with v = -4,-2,0,2,4,10,20 were examined using 5,000

replications. The algorithm was allowed 300 iterations on each
4

replication. Convergence was declared if r7k+1 - ykl < 10”7
If for any k, €, < 10'2, @ = 0 was taken as the estimate.' If

the algorithm falled to converge after 300 iterations, 9300 was
taken as the estimate. Starting points of (1) Yo = 1 and (11)

Yo = (Z-p)-l(p+2v) ifZ>p, vy =11f Z <p, were tried. The
choice Yo = 1 may be viewed as the "center" of the parameter

space in that it corresponds, for the induced negative binomial
prior on n,to a success probabllity of .5. The choice

yo = (2-p)"1(p+2v) arises from the fact that E(2) = p + vy L(p+av).
Both starting values were successful in obtaining the unique

MLE. However, (11) tended to converge more quickly. Convergence
tended to be slower with increasing v although more frequently
to the unique MLE than to the fixed point at 0, i.e., more
frequently we would be in the case of Figure (b). Increasing p

from € to 12 led to quicker convergence again more frequently

to the MLE.
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Figures 2 and 3 display the results for p = 6 and p = 12,
respectively, in terms of relative mean square error (RMSE),

relative to p/2 + 26, that of the MVUE.

i.e., the MSE of &

In Figure 1, we present € values of v surrounding v = 0 which

we recall ylelds (2-p)*/2. 1In Figure 2, we simplify to

v = -2,0,2. It is noteworthy that the Vv = 1,2 estimates not previously

discussed in the literature dominate the positive part MVUE except for 6

small.
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